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Abstract
The full-potential all-electron linearized augmented plane wave plus local orbital
(FP-LAPW + lo) method, as implemented in the suite of software WIEN2k, has been used to
systematically investigate the structural and electronic properties of the group II phosphide
semiconductor compounds M3P2 (M = Be, Mg and Ca). The exchange–correlation functional
was approximated as a generalized gradient functional introduced by Perdew–Burke–Ernzerhof
(GGA96) and Engel–Vosko (EV-GGA). Internal parameters were optimized by relaxing the
atomic positions in the force directions using the Hellman–Feynman approach. The structural
parameters, bulk modules, cohesive energy, band structures and density of states have been
calculated and compared to the available experimental and theoretical results. These compounds
are predicted to be semiconductors with the direct band gap of about 1.60, 2.55 and 2.62 eV for
Be3P2, Mg3P2 and Ca3P2, respectively. The effects of hydrostatic pressure on the behavior of
band parameters such as band gap, valence bandwidths and anti-symmetric gap (the energy gap
between two parts of the valence bands) are investigated using both GGA96 and EV-GGA. The
contribution of s, p and d orbitals of different atoms to the density of states is discussed in detail.

1. Introduction

The wide band gap semiconductors are currently under intense
investigation due to their unusual properties as well as their
possible applications in electronic and optoelectronic devices.
By alloying them, it is possible to tune the wavelength of
emitted light through a wide spectral region and this could
offer the opportunity to create a new family of wide band gap
semiconductors. Among them nitrogen- and phosphorus-based
semiconductor compounds [1–10] and their alloys [1, 11–13]
have attracted considerable interest in recent years due to their
applications. Alkaline earth metals (Be, Mg, Ca and Sr) are
known to form semiconducting compounds with the nitrogen
and phosphorus elements of the 15th group in the periodic
table. These compounds are crystallized in the body centered
cubic structure with the anti-bixbyite phase of the mineral
(Mn, Fe)2O3 and space group of Th

7 (Ia3-206).
In the present work, our attention is focused on the

structural and electronic properties of the group II phosphide
semiconductor compounds M3P2 (M = Be, Mg and Ca). To

the best of our knowledge, the experimental and theoretical
reported works on M3P2 compounds are as follows: Carvalho
et al [10] have been concluded that Be3P2 micro-crystals
are formed in Be-doped phosphorus-based semiconductor
compounds grown by chemical beam epitaxy at temperatures
higher than 500 ◦C and high Be concentrations. The similar
formation for the Be3P2 has been suggested by Panish et al
[14]. Imai and Watanabe [9] have investigated the electronic
structure of Mg3P2 by the first-principle pseudo-potential
plane wave method. They have obtained a direct band gap
of 1.73 eV for this compound. It is noticeable that there
are still discussions about the stoichiometric composition of
Ca3P2 [9], but an experimental work has been reported on the
thermodynamic properties [15] of this compound.

These incomplete works and this point that the electronic
structures of these compounds have not yet been fully clarified
have led to further study of the physical properties of
M3P2 semiconductor compounds at ambient conditions and
hydrostatic pressure. This study can provide a basis for
understanding future device concepts and applications.
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Table 1. Four internal parameters (u, x, y, z) in anti-bixbyite cubic
structure of M3P2 (M = Be, Mg and Ca).

u (P2) x (M) y (M) z (M)

Be3P2 0.994 0.379 0.130 0.374
Mg3P2 0.977 0.386 0.146 0.380
Ca3P2 0.966 0.389 0.151 0.381

Section 2 gives the details of the computational method
and some important parameters. Results and discussion
concerning structural and electronic properties and the effect
of hydrostatic pressure on the band parameters are in section 3.
Concluding remarks are presented at the end of the paper.

2. Computational methodology

Density functional theory (DFT) [16, 17] calculations have
been carried out using the scalar relativistic FP-LAPW + lo
method, as implemented in the all-electron WIEN2k code [18].
The GGA96 [19], which is based on exchange–correlation
energy optimization, is utilized to optimize the internal
parameters and to calculate the total energy. The Engel–
Vosko [20] generalized gradient approximation (EV-GGA),
which optimizes the exchange–correlation potential, and also
GGA96, are used for band structure calculations. In the
FP-LAPW + lo approach the wavefunction, charge density
and potential are differently expanded in two regions of the
unit cell. Inside the non-overlapping spheres of radius RMT

around each atom, the spherical harmonic expansion is used
and in the remaining space of the unit cell the plane wave
basis set is chosen. The values of 2.3, 1.9 and 1.7 au for
Ca, Mg and Be atoms respectively and 2.1 au for P have been
chosen for the muffin-tin radii. The maximum l value for the
wavefunction expansion inside the atomic spheres is confined
to lmax = 10. The parameter RMT Kmax = 7.5, where RMT is
the smallest muffin-tin radius and Kmax is the truncation for the
modulus of the reciprocal lattice vector, was used for the plane
wave expansion of the wave functions in the interstitial region
(this corresponds to a kinetic energy cutoff of 20.77 Ryd).
Reciprocal space integration in the first Brillouin zone has been
performed on a grid of 216 k points. Convergence of total
energies with respect to the number of k points and Kmax has
been thoroughly checked. Convergence criteria for the energy
and charge difference were 0.01 mRyd and 0.0001 respectively.

The cohesive energy is defined as the total energy of
isolated atoms minus the energy of the formula unit in the
solid. In order to obtain an accurate value for the cohesive
energy, the energy calculations for isolated atoms and crystal
must be performed at the same level of accuracy. To fulfill such
a requirement, the energy of an isolated atom was computed
by considering a large cell (FCC structure) containing just one
atom. The size of this cube was chosen sufficiently large so that
the energy convergence with respect to the size of the cube was
less than 0.001 Ryd. The corresponding sides were obtained
as 17, 17, 19 and 21 au respectively for N, Be, Mg and Ca
atoms. However, to ensure that the atomic energies are well
converged, the parameter for determining the size of the basis
set, RMT Kmax, was gradually increased until the change in the
atomic energies was less than ∼1 mRyd.

Table 2. Lattice parameters, bulk modulus (B), its pressure
derivative (B ′) and cohesive energy per formula unit obtained using
FP-LAPW + lo calculations within GGA96 for M3P2 compounds.
Results of others are included for comparison.

Lattice
parameters B (GPa) B ′

Ecoh (Ryd per
formula unit)

Be3P2:

Present work 19.262 99.087 3.60 1.6941
EXPa 19.181
EXPb 19.181

Mg3P2:

Present work 22.813 58.922 3.38 1.3634
EXPb 22.696
Calcc 22.734

Ca3P2:

Present work 25.372 41.882 3.78 1.6113

a Reference [10].
b Reference [21].
c Reference [9].

3. Results and discussion

3.1. Total energy calculations

The M3P2 compounds, at ambient conditions, crystallize in
the cubic anti-bixbyite phase of the mineral (Mn, Fe)2O3

compounds in body centered space group Ia3 (206) with 40
atoms per primitive cell. In this structure, the metal atoms are
in tetrahedral sites of a cubic close packed array of P atoms.
The metal atoms are in general positions, 48e of Ia3 (x, y, z;
etc) and there are two kinds of P atoms. P1 is in position
8b (1/4, 1/4, 1/4; etc) and P2 is in position 24d (u, 0, 1/4;
etc) [21].

The available experimental lattice constants are used as
the starting point to perform the structural calculations. As
no calculated or experimental values for internal parameters
of these compounds have yet been reported in the literature, at
first their rough values are selected from similar compounds
such as Be3N2 and Mg3N2. These parameters have been
optimized by relaxing the atomic positions in the force
direction using molecular dynamic methods. Then the
optimized internal parameters are used to calculate the total
energy for several lattice volumes, and by fitting the results
with the Murnaghan equation of state [22] the equilibrium
lattice parameter for each compound has been calculated.
Finally, using the new optimized lattice parameters, once
again the more accurate values of internal parameters are re-
calculated. The obtained results for internal parameters are
reported in table 1. In table 2, the calculated equilibrium lattice
constants, cohesive energy per formula unit, bulk modulus
and its pressure derivative for all compounds are presented
and compared with available experimental or theoretical data.
Our calculated lattice parameters for the Be3P2 and Mg3P2

are in good agreement with the available experimental and
theoretical values. The small overestimation of about 0.42%
and 0.52% with regard to the experimental data for Be3P2

and Mg3P2 respectively confirms the exact calculations by
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Figure 1. Band structures of M3P2 compounds obtained by EV-GGA at the equilibrium lattice parameter calculated by GGA96. The direct
band gaps are about 1.60, 2.55 and 2.62 eV for Be3P2, Mg3P2 and Ca3P2, respectively, at the � point.

Figure 2. The behavior of the band gaps (Eg), valence bandwidths
and anti-symmetric gap, Eg−A, for Be3P2 using both GGA96 and
EV-GGA methods at different lattice parameters. The dashed line
indicates the zero pressure point (theoretical equilibrium lattice
constant).

the FP-LAPW + lo method. To our knowledge no structural
calculation has been reported for the Ca3P2 compound in the
literature, hence our results can be considered as a prediction.

The inter-atomic distances, calculated using the optimized
internal parameters and equilibrium lattice constants, are
reported in table 3. It can be concluded that the smaller the
average bond length the larger the bulk modulus, consistent
with the semi-empirical Cohen’s equation [23]. This may also
be due to the fact that the electronegativities of Be, Mg and Ca
are about 1.5, 1.3 and 1.0 respectively. So with growing atomic
number of cations in M3P2 compounds the M–P bonds will be
more ionic and less rigid.

Figure 3. The variations of the band gaps (Eg) valence bandwidths
and anti-symmetric gap, Eg−A, with respect to lattice parameters, for
magnesium phosphide using both GGA96 and EV-GGA methods.
The dashed line shows the zero pressure point (theoretical
equilibrium lattice constant).

Table 3. Inter-atomic distances in three phosphide compounds,
M3P2 (M = Be, Mg and Ca).

M–P1 M–P2

Be3P2 2.196 2.181, 2.195, 2.226
Mg3P2 2.596 2.545, 2.597, 2.645
Ca3P2 2.886 2.867, 2.881, 2.910

3.2. Electronic properties

In calculating the self-consistent band structure within DFT,
both LDA and GGA usually underestimate the energy gap.
This is mainly because they have simple forms that are not
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Figure 4. The behavior of the band gap (Eg) valence bandwidths and
anti-symmetric gap, Eg−A, with respect to pressure on the unit cell,
for Ca3P2 using both GGA96 and EV-GGA methods. The dashed
line marks zero pressure (theoretical equilibrium lattice constant).

sufficiently flexible to reproduce accurately both the exchange–
correlation energy and its charge derivative. Engel and
Vosko [20], by considering this shortcoming, constructed a
new functional form of exchange–correlation potential (EV-
GGA) and were able to better reproduce the exchange potential
at the expense of less agreement in exchange energy. The EV-

GGA has been applied to several solids and compared with
other GGA-based calculations [2, 3, 24, 25]. It has been
concluded that EV-GGA usually improves the band gap and
some other properties that mainly depend on the accuracy of
the exchange–correlation potential, while for calculating the
properties that are based on total energy calculations, such
as equilibrium lattice parameter and bulk modulus, GGA96
is more appropriate. Hence, in the present work, first
the equilibrium lattice constant and internal parameters are
calculated by GGA96, and subsequently the results are applied
to calculate the band structure of M3P2 compounds along
high symmetry directions by EV-GGA and GGA96. The
obtained band structures of M3N2 compounds at the theoretical
equilibrium lattice constant are presented in figure 1.

The valence bands for all cases are separated into two sub-
bands that are labeled starting from the top as VB1 and VB2.
The widths of these sub-bands are progressively decreased and
the anti-symmetric gap (Eg−A: the energy gap between two
parts of the valence bands) between them is increased from
Be3P2 to Ca3P2 compounds. The �–� band gap, Eg, values are
obtained as 0.889 and 1.60 for Be3P2, 1.63 and 2.55 for Mg3P2

and 1.91 and 2.62 for Ca3P2 using GGA96 and EV-GGA
respectively at the theoretical equilibrium lattice constant.

To study the response of the band structure with respect
to the hydrostatic pressure, the electronic calculations are
performed at different lattice parameters using both EV-GGA
and GGA96. The corresponding pressures are changed from

Figure 5. Total and partial density of states for s, p and d orbitals of Be3P2 compound using GGA96 at equilibrium lattice constant.
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Figure 6. Total and partial density of states for s, p and d orbitals of magnesium phosphide using GGA96 at zero pressure.

−7.34 up to +46.39,−4.41 up to +26.63 and −3.08 up
to +20.19 GPa for Be3P2, Mg3P2 and Ca3P2 respectively.
The effects of hydrostatic pressure on the band gap, valence
bandwidths and anti-symmetric gap using both GGA96 and
EV-GGA are shown in figures 2–4. It is clearly seen for all
cases that by applying positive pressure on the system the band
gaps remain along �–� but the values for both GGA96 and EV-
GGA monotonically decrease. Similar behavior is observed
for the anti-symmetric gaps. This means that by reducing the
lattice parameter the system is closer to the metal–insulator
transition.

Although GGA96 and EV-GGA predict different values
for the band gap, the behaviors of the gaps with respect
to positive pressure are rather similar using these two
approximations. It is evident from figures 2–4 that the
monotonic slope of the Eg curves is decreased from Be3P2 to
Ca3P2 at positive pressures. This behavior is consistent with
the bulk modulus values of these compounds. At negative
pressure the trend is different for GGA96 and EV-GGA.
This may be due to the fact that the EV-GGA approach
overestimates the lattice parameters and underestimates the
bulk modulus with respect to the GGA96 [2]. By reducing the
lattice parameter, the valence bandwidths are increased in all
compounds. This behavior is rooted in the fact that the smaller
the average bond length the greater the hybridization between
different orbitals.

To further study the electronic structure of these
compounds, the total (whole cell contribution) and angular
momentum decomposed (partial) densities of states (DOSs) are
computed at the equilibrium lattice constant by the tetrahedral
method [26] using GGA96. The corresponding results are
plotted in figures 5–7. The fundamental points to note from
the DOS calculations are as follows.

Finally, the overall total DOSs for all cases are very similar
to each other; the valence bands are split in two groups, a
narrow sub-band located deep in the lower energy range and
a wider one near the Fermi level. The s orbitals of the P atoms
have the major contribution to the lower valence sub-band with
a width that decreases by growing the atomic number of M.
This means that, from Be3P2 to Ca3P2, the electrons located
in this group are more localized and have less influence on
the conduction bands. The upper valence sub-band for all
compounds is mainly dominated by the phosphorus 3p states
and with less contribution from the s and p orbitals of M atoms.
It is evident from DOS plots that the p orbitals of P atoms
hybridize with the s and p states of M atoms in VB1, while
the s orbitals of P atoms have insignificant overlap with other
orbitals.

4. Conclusion

The FP-LAPW + lo method has been used to systematically
study the zero temperature structural and electronic properties
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Figure 7. Total and angular momentum decomposed density of states for s, p and d orbitals of Ca3P2 compound using GGA96 at ambient
conditions.

of M3P2 (M = Be, Mg and Ca) semiconductor compounds. To
our knowledge no perfect data in the electronic and structural
properties of M3P2 compounds have been reported so far,
hence our results can serve as a prediction for future study.
The obtained lattice parameters are in good agreement with the
known experimental data. The direct band gap values at zero
pressure are predicted as 1.60, 2.55 and 2.62 eV for Be3P2,
Mg3P2 and Ca3P2 respectively. The overlapping of phosphorus
p orbitals with the s and p states of M atoms in the lower
valence bands is remarkable but the s orbitals of P atoms have
insignificant hybridization with other orbitals.
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